Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0569P)^2]$
R(F) = 0.0321	+ 1.6054 <i>P</i>]
$wR(F^2) = 0.1060$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.065	$(\Delta/\sigma)_{\rm max} = 0.001$
5562 reflections	$\Delta \rho_{\rm max} = 0.361 \ {\rm e} \ {\rm \AA}^{-3}$
441 parameters	$\Delta \rho_{\rm min} = -0.305 \ {\rm e} \ {\rm \AA}^{-3}$
H atoms were isotronically	Extinction correction: none
refined as riding atoms	Scattering factors from
Termed us Hung doms	International Tables for
	Crystallography (Vol. C)

Table	1	Calastad	a a a materia navamatara	1 A	01
Lanie		SPIPIPI	geometric numberers	IA.	

	0	1	
Ni7	2.080 (4)	S1-C1	1.675 (3)
Ni7—B11	2.085 (3)	S2—C2	1.683 (3)
Ni7B3	2.121 (3)	P1—B10	1.910 (3)
Ni7-B2	2.159 (4)	B8—O1	1.473 (4)
Ni7—S1	2.2056(10)	B11—O2	1.483 (4)
Ni7—S2	2.2135 (10)		
B8Ni7B11	95.50(13)	B8—Ni7—S1	81.76 (10)
B8—Ni7—B3	48.73 (14)	B3Ni7S1	105.09 (10)
B11—Ni7—B3	86.72 (13)	B11-Ni7-S2	82.78 (9)
B8—Ni7—B2	88.47 (14)	B2Ni7S2	109.25 (10)
B11—Ni7—B2	48.19(13)	\$1—Ni7—S2	91.08 (4)
B3—Ni7—B2	49.63 (14)		

Data collection: CAD-4 Manual (Enraf-Nonius, 1988). Cell refinement: CAD-4 Manual. Data reduction: SDP-Plus (Frenz, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai & Huttner, 1994). Software used to prepare material for publication: SHELXL93.

The authors acknowledge the support of the Chinese National Science Foundation.

Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: AB1444). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beckett, M. A., Greenwood, N. N., Kennedy, J. D. & Thornton-Pett, M. (1985). Polyhedron, 4, 505–511.
- Bould, J., Crook, J. E., Greenwood, N. N., Kennedy, J. D. & McDonald, W. S. (1983). J. Chem. Soc. Chem. Commun. pp. 949– 950.
- Bould, J., Crook, J. K., Greenwood, N. N., Kennedy, J. D. & Thornton-Pett, M. (1990). J. Chem. Soc. Dalton Trans. pp. 1441–1450.
- Bould, J., Greenwood, N. N., Kennedy, J. D. & McDonald, W. S. (1982). J. Chem. Soc. Chem. Commun. pp. 465–467.
- Cheek, Y. M., Kennedy, J. D. & Thornton-Pett, M. (1985). *Inorg. Chim. Acta*, **99**, L43–L44
- Crook, J. E., Elrington, M., Greenwood, N. N., Kennedy, J. D., Thornton-Pett, M. & Woollins, J. D. (1985). J. Chem. Soc. Dalton Trans. pp. 2407–2415
- Crook, J. E., Greenwood, N. N., Kennedy, J. D. & McDonald, W. S. (1981). J. Chem. Soc. Chem. Commun. pp. 383-384.
- Crook, J. E., Greenwood, N. N., Kennedy, J. D. & McDonald, W. S. (1982). J. Chem. Soc. Chem. Commun. pp. 933-934.
- Elrington, M., Greenwood, N. N., Kennedy, J. D. & Thornton-Pett, M. (1986). J. Chem. Soc. Dalton Trans. pp. 2277–2282.

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved

- Fontaine, X. L. R., Greenwood, N. N., Kennedy, J. D., Thornton-Pett, M. & Zheng, P. J. (1987). J. Chem. Soc. Chem. Commun. pp. 1717–1718.
- Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Greenwood, N. N., Kennedy, J. D., Thornton-Pett, M. & Woollins, J. D. (1985). J. Chem. Soc. Dalton Trans. pp. 2397–2406.
- Guggenberger, L. J. (1972). J. Am. Chem. Soc. 94, 114-119.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Yao, H.-J., Fu, J., Jin, R.-S., Wei, J.-D., Chen, J. & Zheng, P.-J. (1995). Chin. J. Struct. Chem. 14, 364–368.
- Zsolnai, L. & Huttner, G. (1994). ZORTEP. A Program for Molecular Graphics. University of Heidelberg, Germany.

Acta Cryst. (1997). C53, 695-697

ortho-Cycloboronation of a Thiobenzoate Cluster: $[(PPh_3)(PhCOS)_2NiB_{10}H_{10}]$.- $0.5C_6H_{14}$

Chun-Hua Hu,^a Jian-Min Dou,^a Hai-Jun Yao,^b Wen Li,^a Ruo-Shui Jin^b and Pei-Ju Zheng^a

^aResearch Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China, and ^bDepartment of Chemistry, Fudan University, Shanghai 200433, People's Republic of China. E-mail: jtwang@fudan. ihep.ac.cn

(Received 19 November 1996; accepted 4 February 1997)

Abstract

The title compound, 2, 7:3, 7-di (μ -thiobenzoato-S:O)-7-(triphenylphosphine-P)-8,9:10,11-di- μ H-7nickela-*nido*-undecaborane-hexane (1/0.5), C₃₂H₃₅B₁₀-NiO₂PS₂.0.5C₆H₁₄, has been synthesized and characterized by X-ray diffraction analysis. The Ni atom is bound to one PPh₃ ligand, two S atoms and four B atoms of the {NiB₁₀} cage. The *ortho*-cycloboronation of thiobenzoates produces two five-membered Ni—S— C—O—B rings.

Comment

In some metallaboranes, there is *ortho*-cycloboronation of a metal ligand to the cluster. The groups of cyclization include the phosphine-phenyl ligand (Crook, Greenwood, Kennedy & McDonald, 1982; Bould, Greenwood, Kennedy & McDonald, 1982; Bould, Crook, Greenwood, Kennedy & ThorntonPett, 1990; Bould, Crook, Greenwood, Kennedy & McDonald, 1983; Elrington, Greenwood, Kennedy & Thornton-Pett, 1986), acetate (Fontaine, Greenwood, Kennedy, Thornton-Pett & Zheng, 1987) and SCSNEt₂ (Beckett, Greenwood, Kennedy & Thornton-Pett, 1985). We have reported previously the orthocycloboronation of benzoate (Yao et al., 1995) and thiobenzoate (Dou et al., 1997) clusters. The latter compound is [(PhCOS)₂NiB₁₀H₈(PPh₃)], (I). Another example of an ortho-cycloboronated nickelaborane, $[(PPh_3)(PhCOS)_2NiB_{10}H_{10}].0.5(C_6H_{14}), (II), is reported$ here.

Compound (II) is a *nido* 11-vertex $\{NiB_{10}\}$ cage, with the Ni atom in the open NiB₄ face. There are two fivemembered rings, namely Ni7-S1-C1-O1-B2 and Ni7—S2—C2—O2—B3. The two rings are either side of the plane formed by atoms Ni7, B1 and B5. The Ni atom is bound to one PPh₃ group, two S atoms and four B atoms. The Ni7—B2 and Ni7—B3 distances (Table 1) are shorter than the corresponding Ni-B distances in Ni($B_{10}H_{12}$)²⁻ (Guggenberger, 1972), while Ni7— B8 and Ni7-B11 are within the expected range. In compound (I), it is the Ni7—B8 [2.080 (4) Å] and Ni7— B11 [2.085 (3) Å] distances, not Ni7—B2 [2.159 (4) Å] and Ni7-B3 [2.121 (3) Å], that are shorter. This also demonstrates that ortho-cycloboronation can strengthen the Ni—B bonding.

Fig. 1. The molecular structure showing 30% probability displacement ellipsoids. H atoms on C atoms have been omitted for clarity.

The distances between the Ni and two S atoms (Table 1) are longer than the Ni-S bond lengths in compound (I) [Ni7-S1 2.2135(10) and Ni7-S2 2.2056 (10) Å]. This may be interpreted by steric effects owing to two Ni-S-C-O-B rings being on the same side of the cage $[S1-Ni7-S2 \ 87.86 \ (5)^{\circ}]$. The B-O distances in compounds (I) and (II) are essentially identical but longer than those reported for B-OR groups (Kennedy, 1986). This is attributed to the $p-\pi$ conjugation in the oxygen-carbon-sulfur system. A similar situation was observed in the acetate (Fontaine, Greenwood, Kennedy, Thornton-Pett & Zheng, 1987) and benzoate (Yao et al., 1995) compounds. The B8 and B9 atoms, as well as B10 and B11, are bridged by H atoms at distances of $1.24(4)-1.31(4)^{\circ}$.

Experimental

The synthesis of the title cluster was carried out by reaction of $[NiCl_2(PPh_3)_2]$ (0.6 mmol) and $(Et_4N)_2B_{10}H_{10}$ (0.6 mmol) with PhCOSH (1.2 mmol) in refluxing dichloromethane for 63 h under an atmosphere of dry nitrogen. The formed solution was reduced in volume and chromatographed using dichloromethane/light petroleum (4:1) as the eluting medium to give the black title compound at $R_f = 0.96$. The product was recrystallized from *n*-hexane/dichloromethane solution.

Crystal data

463 parameters

$C_{32}H_{35}B_{10}NiO_2PS_2.0.5C_6H_{14}$ $M_r = 756.59$ Monoclinic $P2_1/n$ a = 11.043 (5) Å b = 15.524 (3) Å c = 23.016 (3) Å $\beta = 91.28 (2)^{\circ}$ $V = 3945 (2) Å^3$ Z = 4 $D_x = 1.274 \text{ Mg m}^{-3}$ D_m not measured	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 10.4-12.8^{\circ}$ $\mu = 0.670$ mm ⁻¹ T = 294 (2) K Prism $0.42 \times 0.30 \times 0.18$ mm Black
Data collection	
Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: empirical via ψ scans (North, Phillips & Mathews, 1968) $T_{min} = 0.748$, $T_{max} = 0.886$ 7413 measured reflections 6933 independent reflections	4959 reflections with $l > 2\sigma(l)$ $R_{int} = 0.0213$ $\theta_{max} = 25^{\circ}$ $h = -13 \rightarrow 13$ $k = 0 \rightarrow 18$ $l = 0 \rightarrow 27$ 3 standard reflections frequency: 60 min intensity decay: 0.1%
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0428$ $wR(F^2) = 0.1578$ S = 0.986 6933 reflections 463 parameters	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0963P)^{2} + 5.395P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} = -0.018$ $\Delta\rho_{\text{max}} = 0.645 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.629 \text{ e} \text{ Å}^{-3}$

Н	atoms	were	isotr	opically	
	refined	l as ri	ding	atoms	

Scattering factors from International Tables for Crystallography (Vol. C)

Extinction correction: none

Table	1.	Selected	geometric	parameters (A	Å,	°)	
-------	----	----------	-----------	---------------	----	----	--

Ni7—B3	2.087 (4)	Ni7P1	2.3343 (13)
Ni7—B2	2.092 (4)	S2—C2	1.680 (4)
Ni7—B8	2.168 (4)	S1C1	1.664 (4)
Ni7—B11	2.203 (4)	B3—O2	1.463 (5)
Ni7—S1	2.2735 (11)	B2—O1	1.486 (4)
Ni7—S2	2.3118 (13)		
B3—Ni7—B2	49.8 (2)	B3—Ni7—S2	81.83 (12)
B3—Ni7—B8	49.8 (2)	B2—Ni7—S2	115.09 (12)
B2—Ni7—B8	86.8 (2)	B8—Ni7—S2	91.22 (13)
B3Ni7B11	86.3 (2)	\$1—Ni7—S2	87.86 (5)
B2—Ni7—B11	48.5 (2)	B8Ni7P1	96.38 (13)
B8—Ni7—B11	89.9 (2)	B11—Ni7—PI	94.18 (12)
B3—Ni7—S1	119.15 (12)	S1—Ni7—P1	94.67 (4)
B2—Ni7—S1	83.49 (11)	S2—Ni7—P1	102.13 (4)
B11—Ni7—S1	87.82(12)		

Considering both R and U_{eq} , the site-occupation factor of the hexane solvent molecule was estimated as 0.5.

Data collection: CAD-4 Manual (Enraf-Nonius, 1988). Cell refinement: CAD-4 Manual. Data reduction: SDP-Plus (Frenz, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai & Huttner, 1994). Software used to prepare material for publication: SHELXL93.

The authors acknowledge the support of the Chinese National Science Foundation.

Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: AB1447). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beckett, M. A., Greenwood, N. N., Kennedy, J. D. & Thornton-Pett, M. (1985). *Polyhedron*, 4, 505–511.
- Bould, J., Crook, J. E., Greenwood, N. N., Kennedy, J. D. & McDonald, W. S. (1983). J. Chem. Soc. Chem. Commun. pp. 949– 950.
- Bould, J., Crook, J. E., Greenwood, N. N., Kennedy, J. D. & Thornton-Pett, M. (1990). J. Chem. Soc. Dalton Trans. pp. 1441–1450.
- Bould, J., Greenwood, N. N., Kennedy, J. D. & McDonald, W. S. (1982). J. Chem. Soc. Chem. Commun. pp 465-467.
- Crook, J. E., Greenwood, N. N., Kennedy, J. D. & McDonald, W. S. (1982). J. Chem. Soc. Chem. Commun. pp. 383-384.
- Dou, J.-M., Hu, C.-H., Yao, H.-J., Li, W., Jin, R. S. & Zheng, P.-J. (1997). Acta Cryst. C53, 693–695.
- Elrington, M., Greenwood, N. N., Kennedy, J. D. & Thornton-Pett, M. (1986). J. Chem. Soc. Dalton Trans. pp. 2277–2282.
- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fontaine, X. L. R., Greenwood, N. N., Kennedy, J. D, Thornton-Pett, M. & Zheng, P.-J. (1987). J. Chem. Soc. Chem. Commun. pp. 1717–1718.
- Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Guggenberger, L. J. (1972). J. Am. Chem. Soc. 94, 114-119.
- Kennedy, J. D. (1986). Prog. Inorg. Chem. 34, 211-434.

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Yao, H.-J., Fu, J., Jin, R.-S., Wei, J.-D., Chen, J. & Zheng, P.-J. (1995). Chin. J. Struct. Chem. 14, 364–368.
- Zsolnai, L. & Huttner, G. (1994). ZORTEP. Program for Molecular Graphics. University of Heidelberg, Germany.

Acta Cryst. (1997). C53, 697-699

A (4-Ethylpyridine)(*N*-salicylideneglycinato)copper(II) Tetramer

SALAM A. WARDA

Institut für Anorganische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, Lahnberge, 35032 Marburg, Germany. E-mail: warda@ax1501.chemie. uni-marburg.de

(Received 2 January 1997; accepted 11 February 1997)

Abstract

The title compound, *cyclo*-tetrakis[(4-ethylpyridine-N)(N-salicylideneglycinato-O,N,O':O')copper(II)], [Cu-(C₉H₇NO₃)(C₇H₉N)]₄, adopts a square-pyramidal Cu^{II} coordination with the tridentate N-salicylideneglycinato Schiff base dianion (TSB²⁻) and the 4-ethylpyridine ligand bound in the basal plane. The apex of the pyramid is occupied by a carboxylic O atom from the neighbouring chelate at an apical distance of 2.458 (2) Å. Four such molecules build a tetrameric unit, in which all copper positions are magnetically non-equivalent. The unit cell contains four tetramers.

Comment

Copper(II) complexes with the tridentate Schiff base dianion of the N-salicylideneaminoalkanoate type (TSB^{2-}) represent a relatively simple model for studies of cooperative bonding effects, which can be investigated by electron paramagnetic resonance (EPR) spectroscopy. In these complexes, which are of the general type $[Cu(TSB)(L)]_n$ (Warda, 1994), three donor atoms (O, N and O) of the Schiff base and a fourth donor atom from the neutral ligand L (N, O or S) normally define the base of a square pyramid. For isolated (monomeric) structures, the copper coordination can be square planar or square pyramidal when a neutral donor ligand is located in the apical site (n = 1; Warda, Friebel, Sivy,Plesch & Švajlenová, 1996). Polymeric structures (n = ∞) result when the apical position is occupied by a carboxylic O atom from an adjacent molecule to make